
The Behavior of Pseudo-Random Sequences 
Generated on Computers by the Multiplicative 

Congruential Method 

By V. D. Barnett 

1. Introduction. The use of pseudo-random elements in Monte Carlo work is 
essential when the scale of this work is such that the calculations involved are too 
extensive for hand calculating machines and it is necessary to employ an electronic 
computer. Although the ability of modern digital computers to perform simple 
binary operations at very high speed makes their use in this work particularly 
relevant, the limited extent of the computer memory, the relatively slow input 
speeds and speeds of access to the memory, and the very large number of random 
elements required (often of the order of 106) combine to make it unfeasible to pre- 
pare the elements beforehand in the required form for input to the computer (e.g., 
on tape or cards), and we must resort to some means of generation of the random ele- 
ments within the computer. 

Mechanical means of generation on peripheral equipment, e.g., by radioactive 
decay, thermal noise in electronic valves, etc., are undesirable because of the irre- 
producibility of the numbers obtained, which enables no check to be kept on their 
quality. It is therefore natural to employ some deterministic method of generation 
of the random elements by recurrence relationships. One such technique which has 
attracted much attention is the multiplicative congruential method (see for exam- 
ple [1], [21 and [31) which proceeds as follows: 

Choose p, x at random as the starting values. 
Successive random elements are then obtained by the recurrence relationship 

(1) Xr+1- Xr(mod M) 

with xo = p: that is, xr+i is of the form pI (mod M). 
Using this method to generate pseudo-random sequences, one must place 

certain restrictions on x and p to ensure that the process does not degenerate to 
zero and that the maximum possible cycle of distinct elements is obtained. We 
shall see that only two restrictions must be placed on x and p to produce the maxi- 
mum cycle and that it is also possible to describe fully the behavior of the system 
for x and p not satisfying these restrictions. 

Because of the binary base of most digital computers, it is convenient to choose 
M of the form 2*. Reduction, modulo M, is then simply a shift of the product 
pIt to retain the least significant k binary digits. If the computer, in common with 
many modem computers, has a facility for low multiplication, i.e., multiplication 
which retains only the least significant half of the set of binary digits comprising 
the product, and the numbers are stored as ko digits, it is a further advantage to 
choose 

M = 2/0o 
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and this enables the successive random elements to be obtained by just one opera- 
tion. 

The length of the cycle of iterates and the conditions under which the maximum 
cycle is obtained must obviously depend on p, x, and M = 2k, and although this 
system (for M = 2k) is discussed in the literature [1], [4], [5], there appears to be 
some confusion as to the behavior of the system for given p, x, and M. 

It has often been assumed desirable to choose x of the form 

X 52k +1 

X 74k +1 

x = 13"3 etc. 

to ensure the maximum cycle; see [3]. For instance, Taussky and Todd [1] state 
that for the system 

p 1 (mod 5) 

x = 517 

M 242 

they obtain a cycle of length 240. We see immediately in this case that the cycle 
cannot be of length 240. As they demonstrate in the same paper, for an x in this 
form (i.e., 5 (mod 8)) the periods of successive digits from the least significant 
digit are as follows: 1, 1, 2, 4, 8, 16, - - *, the least significant digit being always 1, 
the next always 0, the next alternately 0 or 1 the next 0, 0, 1, 1 and so on. 

Now, if we choose p to be of the form 1 (mod 5), say p = 256 = 28, then the 
effect of multiplying the successive powers of x by 28 and reducing the product 
modulo 242 is to shift each digit to a position 8 places more significant and to fill 
in the 8 least significant places with zeros. Because of the strict increase by factors 
of 2 in the period of the digits as they become more significant, this must result 
in a reduction of the length of the maximum cycle by the factor 28. (No formal 
proof of this maximum appears to have been given previously.) 

This example should suffice to illustrate the importance of obtaining a set of 
necessary and sufficient conditions on p and x for the maximum cycle-length to be 
achieved, and also of giving a description of the behavior of the system when these 
conditions are not satisfied. 

The only attempts to define formally the restrictions necessary on p and x 
are those of Leslie and Gower [4] and Certaine [5]. 

Leslie and Gower state that a maximum period of 2k-2 distinct random elements 
is obtained subject to: 

(1) Choosing p and x' at random; 
(2) Replacing x' by x the closest number to x' such that x 5 (mod 8); 
(3) Forming successively the numbers pxr (mod 2k), r = 1, 2, *.. 

The random elements are then all 2k-2 numbers (mod 2k) whose least significant 
binary digits are 10. This result is attributed to a theorem by Euler. 

On examination we find that condition (2) on x is more restrictive than is 
necessary; and, as we have already seen, it is essential that some restriction be 
placed on p. 
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A discussion of the form of x necessary to ensure a cycle of maximum length 
and of the length of this maximum cycle has been given by Certaine [5] for general 
M, but his conclusions on the form of x for the particular case 

M= 2k 

would again appear to be unnecessarily restrictive. 
Furthermore, no attempt has been made to describe in what way the system is 

affected by a choice of x and p which do not satisfy the conditions required for the 
maximum cycle. 

The system of numbers obtained from equation (1) for M = 2k is fully de- 
scribed in the following section, the proofs of the results being given in Section 3. 

2. Formal Description of System of Numbers Generated by x+i = x - xr (mod 2k); 

p = xo . Under favorable conditions on x and p we obtain a maximum cycle of 2k-2 

elements, all of which are distinct. The conditions on x and p to achieve this maxi- 
mum cycle are: 

I: x -5(mod8), i.e. 

x-5 (mod 8) or x-3 (mod 8) 

II: p 1 (mod 2), i.e. 

p must be odd. 

I and II are necessary and sufficient for the maximum cycle to be obtained. 
Relaxation of these conditions affects the length of the cycle, and in some cases 

causes the process to degenerate to zero. 

2.1. Relaxation of Condition I. If p is even and condition I is satisfied, the 
maximum cycle of 2k 2 distinct iterates is reduced in length by a factor 2j where 
this is the highest power of two by which p is divisible, i.e., if p 5 2' (mod 2j+1) 
the cycle is of length 2k-2* 

We have already seen an illustration of this effect in the discussion of the system 
described by Taussky and Todd [1]. 

2.2. Relaxation of Condition I. 
(a) If x is even, the maximum number of distinct iterates is k, generated by 

x 2 (mod 4). In general, if x 2' (mod 2i'') the number of distinct iterates is 

[ ] (where [zi signifies the least integer greater than, or equal to, z). In all cases 

for x even the process degenerates to zero on the [J]th element produced. If p 

is even, say p -2' mod 2'+', the process degenerates to zero on the [k. jth 

element produced. 
(b) If x is odd, the maximum cycle is generated, consisting of 2k-2 distinct 

iterates, if and only if 

x _3or5 (mod8). 
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For any other odd values of x the length of the cycle is decreased as follows: 

If x 7 or 9 (mod 16), length of cycle is 2k-3; 

If x 15 or 17 (mod 32), length of cycle is 2k-4, etc. 

We may completely specify all odd integers in this way, with the general result 
that if x -= 2 j i: 1 (mod 2ji+) the length of the cycle obtained is 2"-j; > _ 2; all iter- 
ates being distinct. 

We may summarize these results as follows. 
If k = 2, 3 the maximum number of distinct elements is k, generated by x = 2 

(mod 4), p =1 (mod 2), and the process degenerates to zero. 
If k > 3 the maximum cycle is of 2k-2 distinct elements and is generated by 

x -3 or 5 (mod 8), again for p 1 (mod 2). 
Small values of k are, of course, of little practical interest in the generation of 

pseudo-random elements. 
Relaxation of the conditions I and II simultaneously has the effect of combining 

the results of paragraphs (a) and (b). For example, 

p 2 (mod 4)1 

x 7 (mod 16)J 

will produce a cycle of 2k-4 distinct elements, or, again, 

p 2 (mod 4) 

x 2 (mod 4) 

will produce ([k 2 ]) distinct elements, the process degenerating to zero. 

3. Proof of Results of Section 2. Let us first consider condition I. For general x 
we have two possibilities: 

x even: i.e., x = 2m 

xodd: x=2m+1 

3.1. x even. M =2 
Let N(x) = [k/I(x)] where I(x) is the index of the greatest power of 2 which 

divides x. Then 

I(xN(x)) > k (since I(xt) = mI(x) # 0). 

Hence xN(x) = 0 (mod 2k) and number of distinct iterates cannot be greater 
than N(x), for at this stage the process degenerates to zero. 

Further, by the definition of N(x), the process cannot terminate earlier. 

Also, if 0 < m, n _ N(x) => am _a (mod 2k), then 

a - 1 (mod 2k) 

and hence 

n - n = 0. 
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Therefore, the congruence classes of the N(x) + 1 powers of x: 1, x, x2, * *,x 
are distinct and we must obtain N(x) distinct iterates up to degeneration of the 
process (x2 not being obtained). N(x) will be a maximum for N(x) = k, i.e., 
I(x) = 1. So x 2 (mod 4) generates k distinct elements, and in general x 2' 

(mod 2'+') generates J 

3.2. x odd. M = 2k; x = 2m + 1. 

LEMMA. Z - I (Z) _ 5 for Z > 5 

Proof. If 2i < Z < 2i+1 then I(Z) ? i. Thus Z - I(Z) _ 2i - i which is mono- 
tone increasing in i and so ? 5 for i > 3, i.e., for. Z _ 8. Also if Z - 5, 6, 7 then 
I(Z) - 0, 1, 0 respectively. Hence Z - I(Z) _ 5, all Z > 5 as required. 

Now if x = 2m + 1, the 2k 1 congruence classes of x in the range (0, 2k) form a 
multiplicative group, the order n(x) of the congruence class of x being the least 
integer such that 

x - 1 (mod 2k), 

hence, n(x) divides 2k-1 [61. 
Furthermore, the congruence classes of x, x2, *.., x8(z) include all powers of 

x and are distinct, for if 

x x (mod 2k) m > n, then 

xm-n _ 1 (mod 2k), 

and m - n must be greater than n(x). 
So we see that the cycles generated by odd integers have length of a power of 

2, the maximum cycle being given by the odd integer of greatest order in the group, 
and we must find the conditions necessary on x for it to have this greatest order. 
That the process must cycle is obvious, for if 

xi _0 (mod 2k), then 

x 0 (mod 2k) since x /r 2k 

i. e., x is even, which is not true. 
Now, n(x) is determined by 

(1 + 2m)2 # 1 (mod 2k) 
)21+11 but (1 + 2m) =l (mod 2k), where a = I(n(x)) -1. 

Consider (1 + 2m)21 (mod 2'+") for suitable p. 
If p = 3, then 

I {(2m) (2>L)} > r - (r) + a 

> 1 + 5 for r 2 5. 

Thus 

(2) (1 + 2m)21-{ (2m)7 (2r)} (mod 21+3), 
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and setting 4 = (1 + 2m)2 - 1, we have 

_~~~~~~~~~~~ 1+3 

4 F21+1m + 21+1(21 - 1)m2 + 3 (2' 1) (2'-' )m3 

21+2- 
+ 23 (2' 1) (2'-' -1) (2 - 3)m4 (mod 2'+3). 

Hence, if I > 2 

_2'+'[m - ? - 2m4] (mod 21+3) 

21+'[m(m + 1) - 2m2(m2 + 1)] (mod 2'+3) 

21+'m(m + 1) (mod 21+3) 

(for if m odd or even 2m2(m2 + 1) 0 (mod 4)). 
We must now distinguish between 

(i) m 0,-i (mod 4) 

(ii) m _1, 2 (mod 4). 

(i) (1 + 2m)2 -1 0 (mod 2'+3) hence, if 1 + 3 = k,x 1 (mod M)) 
so that n(x) divides M/8. 

(ii) (1 + 2m) - 1 0 (mod 21+2) (for m(m + 1) 2 (mod 4) 
but (1 + 2m)21 - O (mod 21+3). Hence, taking k = I + 2; k = l + 3, we have 

M/4 = 1MI8 (md s 
X -1, x # 1, (mod M), so that the maximum value of n(x) is M/4, and it 
assumes this value for all x = 1 + 2m, where m _ 1, 2 (mod 4), i.e., 

x_3(mod8), or 

x 5 (mod 8) 

and only these values. 
Taking p = 4, we again find that 

m(m + 1)21+1 (mod 21+4) (1 - 3) 

and we can immediately determine for what values of x we obtain the next largest 
cycle. 

For this we want 

m(m + 1)-0 (mod 4), and 

m(m+1) #0 (mod8), i.e. 

m 3, 4 (mod 8), giving 

x 7, 9 (mod 16). 

Similarly, we may extend this result by suitable choice of p to show that in 
general we obtain a maximum cycle of 2k distinct elements for 

x _ 2' 4 1 (mod 2j+'). 
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This completely specifies the system for all odd x, for any odd value of x can be 
expressed in the form 

x-_=2' i 1 (mod 2'+'), j= 2, 3,** 

(x = 1 is, of course, trivial). 
We now consider the effect of different values of p on these results. Any value of 

x which is of the form x 2' i 1 (mod 2'+'); j > 2, i.e., any odd value of x, pro- 
duces a cycle of 2k distinct elements having the following characteristics: 

(a) The least significant digit is 1; 
(b) The least significant j + 2 digits are of total order 4; 
(c) The order of the (j + 3)th digit is 2, the order of the (j + 4)th digit is 4, 

etc.; that is, the order of the successive digits beyond the (j + 2)th have orders 
which increase by the factor 2 as they become increasingly more significant. 

Therefore, it is apparent by inspection that the effect of multiplication of the 
elements by any odd value of p will be to leave these characteristics invariant and 
to unalter the length of the cycle of elements obtained. 

Furthermore, if p is even, say p _ 2' (mod 2'+'), the r least significant digits 
must become zero and the above characteristics will then be true for the remaining 
k- r digits, i.e., multiplication by an even-valued p has the effect of shifting the 
digits to a position r places more significant, performing a permutation of the digits 
remaining after such a shift, which does not affect their order, and substituting 
zeros for the least significant r digits. This must result in a reduction in the length 
of the cycle of elements by the factor 2r. 

These remarks are easily verified if we consider the effect of multiplication by 
p of the equation (2) for suitable choice of p for the form of x to be studied. 

If, however, x is even, say x =_ 2' (mod 2J+1), the successive powers of x have j, 
2j, ... zeros as their least significant j, 2j, ... digits, and multiplication by 
any odd-valued p cannot affect the number of distinct iterates before degeneration, 
for it must ensure that in the successive iterates the (j + 1)th, (2j + .)th... 
digits are non-zero. 

WThen p is even, say p = 2r (mod 27+1), multiplication by p will introduce r 
further zeros in place of the r least significant non-zero digits and will therefore re- 

duce the number of iterates to [1 r] 
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